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Discrete representations of the n-dimensional wave equation 

i i  j iirgovtii: 
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139. USA 

Received I5 July 1991, in final form I I  November 1991 

Abstract. A system of first-order difference equations on a rectangular n-dimensional lattice 
is presented, which reduces to the wave equation in the continuum limit. There equations 
allow Solutions of the discrete wave equation to he expressed as summations of paths 
simpler than those obtained through standard path integral formalism, which in turn allows 
wave solutions to be simulated by the same Monte Carlo and other mehtods used to model 
diffusion phenomena. 

1. Introduction 

The general solution of the one-dimensional wave equation may he written as a sum 
of two functions, or travelling waves. The equations of motion of these travelling 
waves, first-order in time and space, are simple translations in opposite directions with 
a constant speed. 

The second section of the paper extends the benefits of such an approach to higher 
dimensions so that, in general, the n-dimensional wave equation is likewise recast as 
a sum of 2n functions, first order in time, each of which implies a motion along the 
positive or  negative directions of the n axes of the space. 

The third section shows that this travelling wave decomposition lends itself to a 
statistical implementation. Recall that the kernel of the diffusion equation is expressible 
as the continuum limit of distributions of random walks on a lattice, and that the time 
evolution of the diffusion equation may be computed by ensembles of particles 
executing such random walks. By assigning these particles a (discrete) phase factor, 
it is possible to give the wave equation a similar implementation. 

The third section shows how similar lattice methods may be used to model the 
n-dimensional Klein-Gordon equation. 

2. The discrete wave equation 

The discrete analogue of the wave equation is defined on an orthonormal, ( n + l ) -  
dimensional spacetime lattice of points whose spacing is unity. The second-order partial 
derivatives of time and space appearing in the d'Aiembertian are replaced by  their 
usual finite-difference analogues 

(1)  
d' - &(. . . , x,, . . .)=I)(. . . , x, + 1, . . .) -2$(.  . . , x., . . .)+ $(. . . , x, - 1,. , .) 

d x :  
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where 

xi=x,,x*,.  . . ,X", 1. 

Thus, the wave equation retains its usual form: 

a2 a2 

Setting the constant e, which will be called the speed of light, to a confers 
several useful properties on the equations; among them, a conserved momentum and 
energy which in the continuum limit converge to their standard forms [l]-this is done 
throughout. In particular, because of the cancellation of all terms in the above equation 
corresponding to the central term of the right-hand side of (I) ,  the spacetime is 
decoupled into two distinct lattices, even and odd (figure I),  such that every spacetime 
point (x, r) in the even (odd) sublattice has the property that 

I+ xi 
i - l  

is even (odd). Without loss of generality, it will be assumed that the solutions considered 
here are non-zero on only one of these lattices. 

I 

Figure 1. Two-dimensional discrete spacetime is decoupled into two distinct lattices, fa5 
the value of the speed of light chosen hete. The diagonal arcs shown connect the nearesl- 
neighbouring points of one such lattice. Higher dimensional spacetimes are likewise 
decoupled into two lattices. 

It can be seen from the two preceding equations that solutions of the discrete wave 
equations form a vector space whose dimensionality is equal to twice the number of 
points in the lattice (i.e. the sublattice). An element of this space of solutions is 
completely determined by arbitrarily assigning values on all points of the lattice at 
two successive times. 

Any solution of the n-dimensional discrete wave equation defined on an n-cubical 
lattice of N" points may also be given in terms of harmonic solutions via Fourier 
analysis, e.g. 
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where the & ( K )  depend on the initial conditions. The frequency o, whose functional 
dependence on  the components of K has been suppressed for clarity, is given by the 
dispersion relation 

(4) 

This passes in the continuum limit to the familiar 

( 5 )  
1 
n 

o2 = - (k :+ .  . . + kZ,) 

where the k,,, are the respective conjugate variables of the Fourier integral appearing 
in the continuum generalization of (3). Note that if c 2 =  l / n  as implied above, the 
numerical integration of (2) is stable. If one were to make the a priori simpler choice 
of setting c 2 =  1, or indeed to any value greater than m, then for all except the 
one-dimensional case there would be spatial frequencies for which the modulus of the 
right-hand side of (4) would be greater than one. The time frequency o would then 
have to contain an imaginary component in order for the equality to hold, leading in 
general to an exponential growth of the solutions. As it is, the solutions retain the 
characteristic undamped periodicity of their continuum analogues. Moreover, their 
deviation from the continuum case stays bounded. Of course, only solutions whose 
associated wavelengths are much larger than the lattice spacing can be well approxi- 
mated by such discrete analogues, though in principle the correspondence may be 
made as close as desired. 

2.1. The one-dimensional case 

2.1.1. Travelling waves and arcs. As is well known, the general solution of the one- 
dimensional discrete wave equation may be written as the sum of two travelling waves, 

@(x, t ) = / + ( u ) + / - ( v )  ( 6 )  

where these two travelling waves are, respectively, functions of the single variables 
U = x - t and U = x + 1, so that they translate unchanged in opposite directions as time 
passes. 

Indeed, this propagation from one spacetime point to its neighbours suggests that 
these travelling waves are functions more naturally defined on the arcs, so to speak, 
connecting neighbouring spacetime points (figure I ) ,  although the utility of such a 
view becomes fully manifest only in higher dimensions. LetfP(x, t )  and/?(x, I )  denote 
functions, which will be referred to asjows, defined on the arcs connecting spacetime 
points of the form (x T 1, I -  I ) .  Similarly, at the risk of redundancy, letfP‘(x, t )  denote 
functions defined on arcs connecting spacetime points of the form ( x * l ,  I + ] ) .  

Obviously, 

, ~ - : “ ( ~ , t ) = f y ( ~ ~ i ,  t - I ) .  (7) 
The decomposition of (6) then implies 

/:“(x, t ) = . r x x ,  1 ) .  

Any solution of (2) may then be expressed in terms of functions defined on the arcs. 
Like the set of point solutions, the set of arc solutions also forms a vector space, 

and the travelling wave decompsoition implies that there exists a homomorphism from 
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the arc solutions to the point solutions (figure 2). Moreover, this homomorphism is 
preserved over time, under the respective time evolution of each system. By the implicit 
use of this homomorphism, ( 6 )  may he restated as 

$(X, t ) = f : " ( x ,  I)+f'"X, I )  =f"t"'(x, f ) + f O Y ' ( X ,  I ) .  

fY"'x,  I )  = -f""'(x, t )  = a 

(9) 

The homomorphism is ohviously not one-to-one, since by everywhere setting 

where a is an arbitrary constant, one obtains an infinity of arc solutions that under 
the homomorphism are mapped onto the trivial (i.e. everywhere vanishing) point 
solution. 

By a proper choice of the basis functions, the expression of a given solution in 
terms of the flows can (in any number of dimensions) be made unique, so that the 
relation between the point solutions and arc solutions becomes an isomorphism. 

2.1.2. Completeness. In considering the notion of completeness, for any number of 
dimensions, the space in question is assumed for convenience to be a torus of length 
2 N  in all spatial dimensions, where N is, furthermore, an even number. Moreover, 
let all solutions have the property that 

$(...,xi ,... )=-$(.. ., xi tN,  ... ) (10) 

where the '+' sign in the expression xi + N implies addition modulo N. Therefore, a 
solution is completely determined by its boundary conditions on the subspace of points 
for which the xi range from 0 to N - 1. By making N as large as necessary, the desired 
generality is retained. (Choosing N to be even makes the initialization described below 
identical, up to a change of sign, for each subspace. Imposing the parity condition 
(IO) excludes the unphysical or urinteresting solutions containing zero-frequency 
modes or terms linear in the time or space variables.) 

Returning again to one-dimensional systems, let h,(x  -xo) stand for the travelling 
wave solutions that at I = f,, are zero everywhere except on the arcs going out from 
the point x, to the respective point x,* 1, where they are 1. Such solutions, and their 
n-dimensional generalizations, will be called hodotic solutions (from the Greek word 
for 'path'); they have many unusual properties, especially i 3  higher-dimensional spaces, 
some of which will be discussed in the appendix. For purposes of clarity, their time 
dependence has been suppressed. 

Figure 2. There exists a homomorphism X from the space of arc solutions to the space of 
p i n t  ~ o l ~ t i o n ~  that is preserved under their respective time evolutions. 
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A moment's thought will show that, under the homomorphism, these arc solutions 
and at 1 =  1 are 

Next, let Go(x-x,) and G,(x-x,)  be the point solutions of the wave equation 

correspond to the point solutions that at t = O  are equal to 
respectively equal to S,,,,, where Sx,x, is the Kronecker delta. 

whose initial conditions (at times 1, and t, = to+ 1) are 

Again, their dependence on time has been suppressed. 
It is clear that any solution of the wave equation may be expressed as a linear 

combination of the Go and G ,  . On the subspace of length N mentioned above, the 
function GO(X - XO) and G,(x- xI) may be expressed in terms of the arc functions h, 
and h- as 

G o ( x - x o ) = r  1 [h+(x-x,-x') sgn(x-x,)- h-(x-xo-x') sgn(x-xo-l)] 
N - 2  

x,=0,2, ... 

I 

(120) 

and 

G,(x-x,) = f 1 
N-l 

x'= I ,  3, ... 
[ - h + ( x  - xI -x')  sgn(x'-x,) .t h-(x - X I  -x') sgn(x'-x,)] 

(126) 

where 

i f x a O  
otherwise. 

sgn(x) = l 1  
(-1 

Again, note that if f,, is even (odd), then the solutions in question are assumed to be 
non-zero on the even (odd) sublattice; likewise, it is assumed that x, is even (odd), 
while x, is odd (even). 

As the equations show, these Green functions for the discrete wavefunction may 
be constructed by interlocking positive and negative hodotic solutions of opposite sign 
(figure 3). Therefore, the travelling waves completely sufice to specify the solutions 
of the wave equation. 

Note that these Green functions require non-zero flows across the entire space. 
Therefore, even if the solution one wishes to simulate is initially non-zero only in some 
localized proper subset of the space, say one that can be covered by a line segment 
(or in  n dimensions; an n-cube), its expression in terms of the Green functions involves 
non-zero flows in a region extending across the entire space. However, if this (point) 
solution has the additional property that its discrete integral over space is constant (as 

Figure 3. An arrangement ai hodotic Solutions that yields a Green function G,(x-q) for 
the discrete wave equation. 
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(2) implies it would be, if it is the same at any two successive times), then one can 
find an arrangement of hodotic solutions that is also non-zero only in a localized subset. 

2.2. The two-dimensional case 

In passing to the two-dimensional case via the present analysis, solutions of the wave 
equation are again to be expressed as a linear sum of components. Each of these 
components wiii iikewise be associaied wiih iiows aiong ihe arcs conneciing nearest 
neighbours. However, since in higher dimensions even a localized wavepacket spreads 
and deforms, it is to be expected that there will be mixing among these modes of 
propagation, instead of the trivial translation found in the one-dimensional case. 

At any time, let each lattice point be viewed as a kind of 'black box', into which 
enter and from which exit four amplitudes. The latter are to be determined solely in 
terms of the former, in a linear fashion. If, as in the one-dimensional case, the flow 
out from the point (x, y,  1 )  and in to the point (x+  1, y, f + 1) is denoted asf::(x, y,  1 ) .  
or equivalently as f$+(x+l, y,  t + l ) ,  and the flows to other points are analogously 
denoted, these considerations may be restated as 

+ ( X , Y .  f ) = E f : ( x , Y ,  t ) = L c " Y X , Y ,  1) (13) 
w r 

and 

where 0: U ' E  { x + , x - , y + , y - } ,  and where the coefficients of the matrix cg,. are to be 
determined. 

Consider the solution of the wave equation corresponding to a non-zero flow in 
only one arc, sayf$+(O. 0,O) = 1, with all other incoming flows to all other points being 
zero; i.e. a two-dimensional hodotic solution. As in the one-dimensional case, the 
boundary conditions for the corresponding point solution are $(x, y,  0) = 6,,S,,,, and 

Since the wave amplitude is thus specified on the entire space at two successive 
times, one can iterate these boundary conditions according to the wave equation (figure 
4j, and thus uniqueiy determine ihe first coiumn of the mairix cZRI. iiepeaiing ihis 

+b, Y.  1 )  = &,,~,o.  

112 

t=2 

t=l 
X 

t=o 
1 

Figure 4. The xt hodotic solution, at l = O ,  1 and 2. 
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analysis for the hodotic solutions of the remaining three directions completes the 
specification of the matrix, so that 

By using the time invariance properties of the wave equation, one also could have 
just as easily determined the coefficients of the inverse of the above matrix, cy$, and 
would have found them to be identical. It is then a matter of simple algebra to show 
that the sum of the ingoing or outgoing flows at any point does indeed obey the discrete 
wave equation. 

Note that the sum of the coefficients along any column of the matrix is one, so 
that the sum of flows entering a point at any time is equal to the sum of the exiting 
flows. This is also obvious from (13). Furthermore, the matrix is unitary. Therefore, 
the sum of the squares of the entering (and thus the exiting) flows is conserved. Thus 
the evolution of such a system can be viewed as a network flow of a conserved quantity. 

2.3. Higher-dimensional cases 

In  higher dimensions, the hodotic solutions h,,(x-x,,, t)  are defined (in terms of their 
point values on the lattice) by the initial conditions 

~ I&*" for f = lo 
h,,jx-x,, f )  = I for t = to+ 1 

jib) 

where the jth component of e, has the value 8,. In terms of their arc amplitudes, the 
hodotic solutions are initially equal to unity on the xi* arc leading out of the point 
x,,, and zero on all the others. 

The method of using (13) and (14), and the evolution of the hodotic solutions in 
order to determine the coefficients of the transition matrix, can he readily generalized 
to  higher dimensions. For example, in three dimensions, the transition matrix is 
determined to be 

\L 

'li"+' I" 
c2 1 1  1 1  I f ;  

+\ OYt 1 - 2  1 1  I 

1 1 1 1 - 2 1 ;  

1 1  1 1 - 2  I 
1 - 2  1 1  

1 1  1 - 2  1 1 ;  T +I - =i[/ 
In the general n-dimensional case, the coefficients of the matrix in any row or column 
will be-l/n, except for the coefficients connecting oppositely directed flows (e.g. c=+,.~-), 
which will be - ( n  - l ) /m 

In each case, the number of travelling waves is determined by the number of 
adjacent neighbours of the points of the lattice, and the evolution of a given wave may 
be determined by the study of the corresponding hodotic solutions. 
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The considerations of completeness may be directly generalized to higher 
dimensions merely by imbedding the one-dimensional expressions for the Green 
functions (12) along any of the axes. This is arguably the simplest way to express the 
Green functions, although in higher dimensions more elaborate expressions are possible 
(figure 9, since the overcompleteness of the hodotic solutions is more extensive. 

y+$ U2 r 

F 
L ? , Y  L F.l/?,l 

U?,- -U2 W l l l  f 
Figure 5. A two-dimensional non-collinear arrangement of hodatic solutions that yields a 
Green function for the discrete wave equation. Nearest neighbour points are displaced by 
one unit of time. The circle marks the support of the point solution. 

It is possible to formally extend the notions of travelling waves to non-orthonormal 
lattices, generalizing the discrete wave equation to hexagonal. tetragonal and, indeed. 
to any set of points where each point j has some privileged subset X ( j )  of generalized 
nearest neighbours; the ‘wave equation’ then becomes 

where IN( j ) l  is the number of nearest neighbours-not necessarily constant throughout 
the space-corresponding to the point j. Again, each pair of neighbours will induce a 
flow, with an interaction among flows that may he determined by studying the behaviour 
of the associated hodotic solutions. As before, there will be a conservation of the sum 
of the flows, and also of the sum of their squares, since the transition matrix is in all 
cases unitary. Of course, how well, if at all, the resultant system mimics the continuum 
wave equation in some limit depends on  the particular lattice employed and, if definable, 
the associated dispersion relation. 

3. Path summations 

The same Monte Carlo (and related) methods that are commonly used to simulate 
diffusion phenomena [2-71 may he extended to the simulation of the wave equation, 
using the results of the previous section. Such an approach is to he distinguished from 
the related method of simulating lattice wave solutions by density variations of lattice 
gases (similar to those obtained in the study of king systems [8]). The validity of such 
an approach may be examined by way ofthe associated (linearized) Boltzmann equation 
[2-4, 9-12]. It is also possible to obtain a cellular automaton model of the wave 

though the present approach is more extensible to the study of Klein-Gordon and 
related equations relevant to physics. 

We briefly recapitulate some results of the random walk as applied to the diffusion 
equation, in order to emphasize the similarity of that formalism to the present one. 

equaiioii I%iect:y, W,thoiii iecOiiijz io pzth siiiiiiiiztioiis and difhsion pheE-eza [I?!, 



Discrete representations of the n-dimensional wave equation 1337 

The exposition given here is presented in such a way as to anticipate and facilitate its 
subsequent application the wave equation. 

Consider a discrete dynamical system consisting of particles executing random 
walks on an orthonormal n-dimensional lattice. At any step in the (discrete) evolution 
of the system, particles are to be found at some lattice point, and they move to a 
randomly chosen nearest-neighbouring point in the subsequent time step. 

The probability that a particle initially at the lattice point x, will at time T be 
found at x may then be written as 

P ( x ;  T lx , ;O)=X W ( 1 )  (19) 

where I is an indexing of the set of (2n)' lattice paths originating at xo, ending at x, 
and containing T steps. If one assumes that the probability p j +  for taking a step along 
a given direction xj. is everywhere constant, then the weighting factor W ( I )  has the 
value 

where r#*( 1 )  is the number of steps along the xi, direction that are found in the Ith path. 
In the case where all the p i ,  are equal, the right-hand side of (19) can be shown 

to converge in the continuum limit to the kernel for the n-dimensional diffusion 
equation [14]. 

3.1. Lattice ensembles 

One can use (19) to give diffusion phenomena is statistical implementation. By using 
an ensemble of appropriately initialized lattices (with the initialization procedure to 
be discussed below), one can use the distribution of particles on these lattices to 
simulate a solution of the diffusion equation f ( x ,  I ) .  Like any formalism, f ( x ,  t )  is 
assumed to be approximately constant over the length of the lattice spacing (and over 
any time interval the length of the fundamental time increment). It is also assumed to 
be bounded, normalized so that its maximum value is initially unity, and, for now, 
positive. 

Let the number of lattices in the ensemble be some very large number M. Define 
n j ( x )  to be the number of particles at the point x at time t in the j th  lattice, where j 
ranges from 1 to M, and where the time dependence will customarily be understood. 

To say that at time t the statistical amplitude at x is f (x, t ) ,  is to say that 

regardless of how the occupation numbers vary from lattice to lattice. Likewise, it will 
be said that an ensemble of lattices statistically simulates the function f ( x ,  t )  if the 
above relation holds. (In any practical implementation, the above equals sign must be 
interpreted to mean 'approximately equals, to the desired degree of accuracy'.) 

3.2. Initialization 

Next, consider how to initialize the ensemble of lattices corresponding to f (x, O), 
beginning with the following definition. Performing an action A 'with a probability p' 
is defined as first obtaining a random number 5, uniformly distributed between 0 and 
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1. If ( S p ,  then action A is performed; otherwise, it is not. The random numbers 5 
obtained from multiple repetitions of such actions are assumed tt be statistically 
independent. 

Each lattice of the  ensemble is to be initialized independently of the others. At the 
point x of, say, the j t h  lattice, one places a particle there ‘with a probability off(x,  0)’. 
One then repeats this procedure on every other point x of the lattice. 

Every lattice in the ensemble, with j ranging from 1 to M, is initialized in this same 
way. This of course means that in general, there will be more than one particle per 
lattice. (Indeed, one could in this case have chosen simply to place the particles from 
all the M lattices onto one single lattice but, again, the exposition given here is made 
in such a way as to facilitate its application to the wave equation.) 

Let us suppose that at time T an ensemble of lattices statistically simulatesf(x, T ) .  
In each subsequent time step, let each particle move to one of its 2 n  nearest neighbours, 
the choice being made randomly for each particle. Assume there is no restriction on 
the number of particles that can be found at given point on any lattice. 

By using basic probability theory, one may use (19) to show that an ensemble of 
lattices initialized according to the preceding procedure will continue to statistically 
simulate f (x, 1) at each subsequent time step. In order to simulate phenomena lasting 
T time steps, a number of lattices on the order of ( ~ I I ) ~ M , ,  will be required in general, 
where Me is the number of lattices required to initially statistically simulate a given 
solution to the desired degree of accuracy. 

3.3. Exfensions fo complex solutions 

There is, of course, nothing about the diffusion equation that requires the solutions to 
be real. Suppose that each lattice particle is endowed with an additional degree of 
freedom corresponding to a discrete phase factor, having one of the four possible 
values of 1, +i, -1 and -i; particles in these respective phases will, respectively, be 
referred to as being positive, posimaginary, negative and negimaginary. 

Assuming that at the lattice point x of the j th  lattice there are a positive particles, 
b posimaginary particles, c negative particles and d negimaginary particles, let the 
definition of the occupation number n j ( x )  be modified so that 

nj(x) = ( a  - c) +i(b - d )  

therefore, this ‘occupation number’ is now in general a complex integer. 
Moreover, it is assumed that oppositely phased particles (positive versus negative, 

posimaginary versus negimaginary) found at the same lattice point at any time annihi- 
late each other, leaving behind particles of at most two phases. 

One can then use ensembles of lattice particles to statistically simulate complex 
solutions as well. To initialize the ensemble of lattices to correspond to the solution 
f ( x ,  f) ,  wheref(x, f )  may now be complex, one first defines the four positive functions 

after which one simply initializes the ensemble according to each of the four functions 
simultaneously, in each case using the correspondingly phased particles; positive 
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particles for fR.+, posimaginary particles forf,,, and so on. (It is assumed that f (x, 0) 
has been normalized so that none of the maxima of the above four functions exceed 
unity.) Therefore, at the end of this initialization every lattice will in general contain 
all four kinds of particles, though at any given point on the lattice there will be particles 
of at most two phases. 

3.4. Applications to the wave equation 

To statistically simulate a solution of the wave equation, one must first expand the 
point solution (which, as stated previously, is specified by its values on the points of 
the lattice at two subsequent time steps) into an arc solution, by way of the Green 
functions (12). It is convenient to normalize the solutions so that the (discrete) integral 
of !he sc;nares of the 8:c az-p!!ndes is. uni!y, i.e. 

c tC (X ,  t)I2= 1 (23) 
(X.“) 

given that this quantity is conserved. (The summation indices denote that the summation 
is taken over all the nearest-neighbour arcs of the lattice.) 

Then, one initializes the lattices as in the case of the diffusion equation, except 
that instead of placing particles at point x-with a probability and phase dependent 
on the amplitude at that point-one now places particles in the arcs leading out from 
x, in likewise accordance with the amplitude at those arcs. A particle in the U arc of 
the point x will then be assumed to execute a step in the U direction in between the 
times t = O  and t =  1, where the 2n possible values of U again represent positive or 
negative directions along the axes of the lattice. 

Just as in the above section dealing with travelling wave solutions, the lattice points 
should here again be viewed as ‘black boxes’, into which particles enter, and out of 
which other particles are generated. Explicitly, the dynamics is such that a particle 
taking a step terminating at some lattice point will cause that lattice point to generate 
particles in all the outgoing arcs (with probability distributions to be discussed below). 
In other words, the particle numbers will no longer be constant, so that it is only be 
averaging that one recovers the conservation of amplitude and its square that is implied 
by unitarity of the transition matrices. 

The particles in the outgoing arcs will in the subsequent time step travel along 
those arcs to the corresponding nearest neighbouring lattice point, where the generating 
process will be repeated. (The parent particle, is assumed to annihilate after reaching 
its destination lattice point.) 

Lonsiaer next m e  iransiuun mairiscs L W  IIIC n-~~riieiibiuiiai gcncIauLauun or (rr,. 
Let I C ~ , ~ , ~  designate the probability that a particle coming into a lattice point along the 
(T’ arc will produce an outgoing particle in the U arc. If e , , ,  is positive, then the 
outgoing particles will have the same phase factor, or sign, as the incoming particles. 
If it is negative, the outgoing particles will have the opposite phase of the incoming 
particles. 

For example, in the two-dimensional case (figure 4), a positive particle coming into 
a lattice point along the x+ arc will produce ‘with a probability f’ a positive particle 
in the y+ (or y - )  arc. It will also produce ‘with a probability $’ a negatioe particle in 
the x_ arc, this change of sign being mandated by the fact that the coefficient c ~ . , ~ +  is 
negative. The generalization to other dimensions is straightforward. 

n - ~ ~  ..._. :.:-- _... :-.. P_._L_ .. /I _ _ _ _ _ ^  .’-,.*\ 
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It is assumed that a parent particle generates output particles in the outgoing arc 
U completely independently of the particles it produces in any other arc U’. Moreover, 
if there is more than one particle entering a lattice point, the particles emitted because 
of incoming particle A are generated independently of the particles emitted because 
of some other incoming particle B. (Once the particles are generated, it is again assumed 
that oppositvely phased particles found simultaneously in any arc annihilate each 
other.) 

An ensemble of lattices that initially simulates the wave equation will then continue 
to do so in subsequent time steps, as may be shown by the same calculation as in the 
case of the diffusion equation. If an ensemble of size M is initialized to simulate the 
wave solution +(x, 0) then, in order to obtain the (point) solution at any other time 
T, one allows the ensemble of lattices to evolve for T time steps and then obtain the 
quantity 

where nj(x,  T )  now refers to the sum of the occupation numbers for the arcs leading 
into the point x (at time T in the j t h  lattice). Again, simulating phenomena lasting T 
time steps to within an initially prescribed accuracy will require a number of lattices 
on the order of (2r1)~M,,, where MO is as before. Note that even though the wave 
equations are time-reversal invariant, the dynamics used in their simulation are asym- 
metrical with respect to time reversal, and it is only by averaging that the symmetry 
is recovered. 

The relationship between amplitudes and paths on the lattice that exists in the case 
of the diffusion equation may be retained in the present case. A particle coming into 
x along the U arc that produces an outgoing particle in the w’ arc still specifies a path 
increment; any particle generated in another outgoing arc likewise represents the 
increment of yet another path. Given that in the general n-dimensional case the 
coefficients of the transition matrices are l / n  and (1 - n ) / n ,  one may heuristically say 
that the (generalized) probability of a particle making a path increment along an 
incoming arc U to an outgoing arc U‘ is l /n ,  unless the two arcs are oppositely oriented 
(implying that the associated path increment is a ‘reverse step’, or reversal), in which 
case it is (1  - n)/ n. 

Relation (19) has an analogue in the case of the wave equation, in that the hodotic 
solutions (and, given the completeness thereof, any solution of the wave equation) 
can similarly be expressed in terms of summations over paths. In fact, in accordance 
with the considerations of the previous paragraph, the n-dimensional hodotic solution 
has the likewise expansion 

h , ( x - x o ,  T)=E W ( L )  (25) 
1, 

where the 2n possible values of U again represent positive or negative directions along 
the lattice, and where I ,  is an indexing of lattice paths of length T whose initial step 
is along the u-direction. In the present case, 

W(1,) = (l /n)T(l-  n)Rc’-) (26)  

where R(1,) is the number of reversals in the path I,;  for the one-dimensional case 
n = 1, zero to the zeroth power is defined to be one. 
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4. The Klein-Cordon equation 

The above results for the wave equation can be extended to the computation of the 
Klein-Gordon equation. On an m-dimensional Euclidean space, the Klein-Gordon 
equation takes the form 

1 J2 -- 
ax:/ 

(27) 

where 7 is a real parameter. (Note again that the above equation is in Cartesian space, 
so that the partial second derivatives have their usual definitions.) The Fourier frequen- 
cies of this equation obey a dispersion relation of the form 

02c2=  k:+ k:+. . . + k: + T ~ .  

4.1. Specification of dimensions 

Consider a toroidal space of n dimensions, all except m of which are of length two 
(so that along such a dimension JI( .  . . , xi + 1,. . .) = $(, . . , xi - 1 , .  . .)). The lattice is 
still effectively m dimensional (i.e. their macroscopic behaviour simulates a wave 
equation whose speed of light is J l J n ) ,  but there are also extra degrees of freedom 
to consider. 

First suppose that there is only one thin dimension, with n - m = 1. In comparison 
to the standard (i.e. n = m) m-dimensional systems, there now exist another set of 
spatial frequencies, K ~ , , ,  that are required to specify the system, which correspond to 
motions along the  thin dimension. However, since the index x, only takes the values 
‘0’ or ‘1’ (or b y  an appropriate change of variables ‘*$), it could he viewed as merely 
a specifier between two different ‘components’ of the solutions. 

-. 

The dispersion relation of this system would then be of the form 

K . .+sinz ““+sin2 
2 

(the last term of course being equal to one). For extremely small lattice spacings, this 
expression would become, in analogy to the discrete wave equation dispersion relation 
described above, 

w2c2 = k:+ . . . + k; + - (:I2 
where a is a constant of the order of one, and d is the length of the lattice spacing. 
This is precisely of the form of the Klein-Gordon dispersion relation, with d l a  acting 
as the Compton wavelength of the particle whose wavefunction obeys the Klein- 
Gordon equation. 

This approach therefore is loosely reminiscent of Kaluza-Klein models, insofar 
that mass is the manifestation of the topology of the space corresponding to motion 
along a ‘matter’ dimension. Of course, this system is only useful for situations involving 
spatial frequencies, i.e. momenta, much smaller than d - ‘ ,  so that only non-relativistic 
phenomena can be accurately simulated. 

Suppose, however, that m is the typical 2 or 3, corresponding to two- and three- 
dimensional cases, and that n is large, even astronomically so. Such a system has an 
evolution insufferably hard to compute (the speed of light is unbearably ‘slow’, i.e. a 



1342 H J HrgovfiC 

relatively large amount of computation is necessary to execute a given time interval 
of the simulation). Even so, the above considerations for the case n = m + 1 still hold, 
except that the mass term in the dispersion relation, a, would be multiplied by a factor 
of n, thereby increasing the spectral range in which the approximation to the continuous 
case is good. Also, the approximately n momenta corresponding to motion along the 
thin dimensions can likewise be further exploited in ways that depend on the internal 
structure of the particles one wishes to simulate. 

Such a model is also reminiscent of the one-dimensional Klein-Gordon equation 
considered by Feynman [ 15,161, which he labels a Dirac equation. Although the system 
under consideration here has the advantage of being applicable in any dimension 
(Feynman was unable to extend his version beyond one dimension [16,17]), both 
versions are limited by the fact that the lattice spacing may no longer be taken to zero, 
but has a fixed length proportional to the Compton wavelength of the particle under 

model with the continuity of space that has been observed at all experimentally 
accessible spatial scales, it would still be more desirable to a priori require the model 
to accommodate an arbitrarily small lattice spacing so that, in principle, the continuum 
could then be replicated to arbitrary precision. The remainder of this section presents 
such a model. However, it should be noted that the previous approach is useful in 
!hat it demanstra!es how the topo!ogy of the !attice is itse!f a re! of parazeters, which 
can be used to alter the dynamics in accordance with the desired equations of motion. 

ioiijideiatioi;. Eveii if ~ i i e  ioiild bi~iegaid ihe piobkiiis of aii~i-iriiiod~iiig such B 

4.2. The modulation method 

Another way of obtaining the Klein-Gordon equation from the wave equation is to 
first double the number of neighbouring arcs. For example, in two dimensions, a point 
then has two arcs connecting any of its nearest neighbours: two arcs in the x+ direction, 
two in the y +  direction and so on. Alternatively, one may suppose that the associated 
tokens have yet another degree of freedom and can be, in either, say, a 'top' or 'bottom' 
state. Each one of the doubled number of arcs will, just as before, lead to separate 
flows, which will be respectively denoted by f, and g,,, etc. The equation of motion 
for the travelling waves is then given by the system of equations 

' 1  -3 1 1 
- 3 1 1 1  

1 1  1 - 3  
1 1 - 3  1 
1 1 1 1  
1 1  1 1 -  
1 1 1 1  

. 1  1 1  1 

1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 -3 1 

-3 1 1 
1 1 1  
1 1 -3 

The system is still, in effect, two-dimensional. Indeed, one sees that by adding the 
respective 'top' and 'bottom' coefficients of the matrix and treating the quantity fr + g, 
as one flow, the original two-dimensional system of equations (15) is recovered. 

Next, divide the above transition matrix into four equal quadrants, and multiply 
the entries in the two diagonal quadrants by e'" and the ones in the off-diagonal 
quadrants by e-'", where a is some small (real) constant. How this modulation can 
be imposed by way of a discrete particle-like process is discussed below. 
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The equation this system satisfies (as may be shown by direct computation) is then 
identical to (2) except that the speed of light is multiplied by a factor of cos a. The 
resultant dispersion relation for this system is then 

(31) 
cos a 

COSW=p(COSK,+COSKy). 
2 

Note again that, as in the case of the wave equations, the frequencies are always real. 
Expanding the above equation in a power series shows that, for a small lattice spacing, 
this system satisfies (for sufficiently small a )  a dispersion relation of the form 

o2 = 2 [ k$+ k: + (:)'I 
where the k, and k, have their usual continuum definitions, and where d is now a 
iength on the order of the iattice spacing. Tnis, again, is preciseiy the form of the 
dispersion relation of the Klein-Gordon equation. Note that by negating a, another 
system satisfying the same dispersion relation is obtained. This approach can immedi- 
ately be extended to any number of dimensions and has the additional advantage over 
the previous one in that the extra components that have been introduced do not change 
the value of the speed of light from l/&, where n is the corresponding effective 
A:-.---:-.. 
UL'ILSIIJIYII. 

4.2.1. Statistical modulation 

The lattice interaction whereby an incoming flow is modulated by a factor of e'" from 
what it would have been in the case of the wave equation may be implemented via a 
particle approach, just as previously the flows associated with the wave equation were 
interpreted in terms of the statistical motions of discrete particles. It will next be shown 
that a gas-like population of Poissonly distributed background particles can be used 
to  effect (statistically) the desired modulation. 

Consider again the lattice in which the Klein-Gordon equation is to  be implemented. 
Aside from the tokens executing wave-like motion, let there also be a number of 
particles comprising what will be called the moderator gas. The dynamics of these 
particles as they move from point to point along the arcs is arbitrary, except that it is 
assumed that they have at all times a Poisson distribution. That is, at each arc, there 
is a probability 

a* 
k! 

P(a;k)=-ee-"  (33) 

of finding exactly k particles. Therefore, if the number of points in the lattice is N", 
the expected number of moderator tokens, assuming 2n arcs per point, is 2naN". 

Suppose next that the presence of one moderator token in an incoming arc multiplies 
the outgoing distribution by ( l+ ie ) ,  where E is a positive number which shall be 
assumed to be less than or equal to one. That is, whereas in the absence of any 
moderator tokens the presence of a wave token of phase 4 produces outgoing wave 
tokens of the same phase with a probabiiity oi a ,  now there wiii ais0 be produced, 
with a probability of ~ / 4 ,  a wave token of phase i$. For the reverse arc, where the 
probability associated with the outgoing tokens is $ and the phase of the outgoing 
tokens is -4, the tokens induced by the moderator particles are likewise produced 
with a probability of 3 ~ / 4  and a phase of 4 4 .  (As always, any resultant tokens of 
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opposite phases annihilate each other.) In the absence of any moderator tokens, there 
is no extra &-interaction. 

Thus, the moderator tokens act to multiply the number of wave tokens. In a given 
arc, in the presence of one moderator token, the input of one wave token leads to an 
expected number of ( l + i e )  tokens. As additional moderator token will act on the 
output tokens of the first one in the same way, resulting in an expected number of 
( l+ ia)*  tokens. 

inerelure, I I  me uismouiiun UI muueruur iuKens IS givcn oy {JJ), ine net expected 
number of output tokens is 

-.-. c... :.-.L. >:...:L...:.- .c-.>.... ..I. 1 :. -: L..,*-\ .L. ~ . . ~  ~~~ 

a -Y a2 
e-= +(l+iE)  -e  + ( I  +iE)2-e-". . . =eira. 

I !  2!  
Thus, a discrete process is sufficient to modulate the statistical flows of tokens by an 
arbitrary real parameter. The moderator distribution thus serves here a function similar 
to that of the Higgs fields of quantum field theories, insofar as it induces a mass. Note 
that if the extra token which the moderators produced are of a phase -i times the 
phase of the initial token, making E, in effect, a negative number, then the corresponding 
modulation factor likewise has a negative phase. The remainder of this section shows 
that moderator particles that are themselves multiply phased can also be used to induce 
a modulation factor. 

Suppose next that there are two types of moderator tokens, each with a Poisson 
distribution parametrized by a and a', respectively, and both of which operate on the 
wave tokens of phase 4 to produce an additional token of phase iq5, with the prob- 
abilities E and E'. The modulation is then eisn+ir'a'. 

Next consider a situation in which the two types of moderator tokens, each initially 
with a Poisson distribution parametrized by a, and a - ,  at each arc of the lattice, are 
given the respective opposite phases of +1 and -1. That is, the modertor tokens are 
themselves given phases, with all the a+ tokens having a positive phase, and all the 
a- tokens having a negative one. (Note that imaginary phases are not included.) Each 
positive and negative tokens multiplies the outgoing distribution of wavefunction 
tokens by a factor of ( l + i ~ )  and ( 1 - i ~ ) ,  respectively. Where moderator tokens of 
both types are found in any arc of the lattice, they again will be made to annihilate, 
SU L l l d l  u1rry ULIS cypc "L 

Thus, in considering both types of tokens at once, one can say that at any arc of 
the lattice there is a certain probability of finding any number k of tokens, where k 
may be negative as well as positive. Finding a negative number of tokens simply means 
finding a positive number of tokens of the second type. 

^^  .L^. ^_I__ -_- ._._^ ..'-.-a.-- ---- :-" 
LULCII IL-Ll la l l 'D .  

The probability of finding any number k is then given by 
m 

1 P ( a + ;  k +  m ) P ( a _ ;  m) k>O 
P ( a + ,  a-; k ) =  (34) t:: 1 P ( a + ; m ) P ( a _ ; m - k )  k<O. 

Writing out the individual Poisson distributions, one obtains 

* I 2  

- I , k , ( G z  k =  ._.,  -1 ,0 ,1 ,2  ,... (34) 
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where I d x )  is the modified Bessel function of the first kind, of order k, which satisfies 
the differential equation 

x 2 1 y x ) + x r y x )  = (x2+ k 2 ) 1 ( x ) .  

The modulation factor arising from such a distribution of tokens is proportional to 
(a+-aJ 

In the limit of infinitely long times, the same kind of modulation can be produced 
by a moderator with a binomial instead of a Poisson distribution, because of the 
similarity of the two when the appropriate limits are taken. (By a binomial distribution, 
what is meant is that there is a probability p of finding one moderator token at any 
arc, and a probability (1 - p )  of finding none.) The ability to statistically modulate 
quantities by an arbitrary phaseshift is useful not only for the simulation of the 
Klein-Gordon equation, but for the analogous equation for particles subject to electro- 
magnetic or other potentials that themselves satisfy wave equations. The potential 
amplitude can, just as the quantum wavefunctions and the moderator, be given 
statistically with discrete tokens, which will operate on the quantum wavefunctions 
just as the moderator tokens do. 

5. Conclusion 

There have been numerous efforts to relate wave phenomena to stochastic phenomena; 
in physics these attempts were often directed toward illuminating quantum mechanics 
[18-201. Some of these efforts were motivated by the similarity of the Schrodinger 
equation to the diffusion equation [21-221, despite the consequent difficulty of making 
the resulting formalism relativistically covariant. Others involve analytically continuing 
the time variable into the complex domain, thereby rendering the propagators amenable 
to Monte Carlo computations [23]. The present formalism is a departure from these 
previous approaches in that it starts directly with relativistically covariant systems 
governed by the standard (i.e. the un-Euclideanized) spacetime metric. The Schrodinger 
equation is then obtainable as the low-velocity limit of the Klein-Gordon equation. 

However, all of the concepts underlying the present work have been studied before. 
In particular, the similarity to a related model introduced by Feynman has already 
been noted. Also, S Gudder has studied the constraints an abstract lattice system or 
graph must satisfy if it is to simulate quantum mechanics (and its associated wave 
equations [24-251. Still others have argued that lattices, discrete networks, and other 
continuum-violating paradigms have an importance beyond their utility as computa- 
tional or analytical aids, given that continuity as experienced in the macroscopic world 
need not apply at sufficiently microscopic scales [26-321. 

Finally, it should be noted that the present formalism is itself particularly well 
suited to the study of single and multiparticle quantum mechanics, in that it may be 
used to compute the square of the wavefunction directly, as opposed to obtaining the 
square only after having computed the wavefunction itself. Just as the present approach 
allows one to obtain the solution of a lattice wave equation at some point by counting 
the (properly weighted) lattice particles, there exists a quantity likewise defined on a 
lattice (also taking on discrete values) which when summed over an ensemble of 
similarly prepared systems is proportional to the square of a wavefunction of a 
multiparticle wavefunction-all in a three-dimensional configuration space governed 
by a dynamics that is local within that space and, as mentioned before, all taking place 
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in un-Euclideanized time [33]. Although the expected value of this quantity is therefore 
non-negative, the quantity itself may assume negative values at sufficiently microscopic 
regimes, though the probability of this occurring becomes vanishingly small as the 
ensemble of systems under consideration becomes large. This unphysical feature 
provides the loophole that allows the constraints of Bell's inequality to be circumvented. 
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Appendix. Hodotic solutions 

Some unusual properties of the hodotic solutions of the wave equation are easily 

sum over all space of some function f (x,  I) at some instant of time. That is, it is a sum 
over the point values of a given solution. 

It is easy to show from the equations of motion that the hodotic solutions have 
the property that X x  h,(x, t )  is equal to one for all time where, as before, 

est&!ished by Yesoning tcI summations over pzths. a s  before, !et ZSJf(.X, t ) ,  be the 

~ ~ { X , + r X , ~ , X * + , . . . r X " ~ l .  

What is much more remarkable is that on any n-dimensional torus whose lengths along 
any of the coordinate axes are the same, the quantity Z, h;(x, t )  is also equal to one 
for all time. That is, without regard to the travelling wave arc solutions, the integral 
of the square of the point solution is conserved. (This property does not hold, in 
general, for an arbitrary sum of the hodotic solutions.) The proof of this conservation 
is somewhat tedious, but it will be outlined briefly, using the two-dimensional case as 
an example. 

At noted above, h,*(x, y ,  T )  may be written as a sum over all walks of length T 
that start the origin, go immediately afterwards to the point (1,0), then on to ( x ,  y ) .  
By the same argument, h:+(x, y ,  T )  may also be written as a sum of terms, each of 
which now represents a pair of such paths. Explicitly, 

..xi, h 2  l_r ,,, 1, T j =  . , Y i 1 1 j 2 T l - l I R " ~ t ) + n ( ' ; ~ )  \ / I  \ * I  (36) 
I.+.!;+ 

where 1;- is an indexing of paths indentical to I,, , and the rest of the notation is again 
the same as for (25) and (26). 

Let h,(x, y, T) represent the contribution to h,(x, y, T) of  paths whose Tth (i.e. 
whose final) step is along the x+ direction, so that 

(37) - 
h , ( x , y , T ) = ~ ~ ; * ( x , y , . i j .  

" 

Then, 

I ( h J 2 = I  I ( h Z + ) ' + I  Z hLhz: (38) 
x x m  x O*O' 
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where the functional dependence on x, y ,  and T has been suppressed. Now the first 
(double) sum on the right is equal to one. This is because it represents the discrete 
integral of the sum of the squares of the travelling wave components for this solution 
of the wave equation. This quantity, due to the unitarity of the transition matrix, is 
always conserved (and therefore equal to its initial value of one). Therefore, it remains 
only to show that the second sum on the right vanishes. 

First suppose that the two-dimensional torus under consideration is of infinite 
length along either axis. Unlike the first sum on the right-hand side, the second contains 
no terms representing pairs of walks that are identical. This is because, if the two paths 
corresponding to such a term were identical, they would obviously have their Tth step 
along the same direction and therefore would belong in the first sum. It is easy to see 
graphically that any such pair of non-identical paths may be related in a one-to-one 
way to another pair of paths (belonging to the same summation) whose cumulative 
number of reversals differs by one (figure 6). Since the value of the contribution of 
any pair of paths depends only on the number of reversals they contain, the contribu- 
tions to the summation from these two sets of paths therefore cancel one another 
(figure 6). (In fact, one can extend this argument to show that (36) would he unchanged 
if the right-hand side summands were multiplied by a,,+,,;+.) 

The same result can be obtained without resorting to graphical methods by represent- 
ing each path as a string of T choices from the set of possible directions, and then 
showing that the contributions from certain classes of strings cancel. 

7% 
....... j I 

I 
........ I 

I I- - - - - -' 

c - - - - ;  
....._.. 

I 
i __..... I 

: I  

I P  

Figure 6. Two paths ( a )  that are identical except for their final m steps. where m # 0, but 
arrive at the same place at t = T, may by a symmetry operation be related to another pair 
of paths ( b )  such that the told number of path reversals in the latter pair differs by one, 
30 that the net contribution of these two pairs is zero. 

To extend these results to a torus, it is also necessary to consider terms in the sum 
representing wrappingpairs, i.e. pairs of paths that when connected end to end describe 
a loop that is not homotopic to a point, but instead wraps around the torus along 
some direction. (The reference to homotopy is, of course, made with regard to the 
continuous paths that can he obtained from the discrete ones by imbedding the lattice 
in a Euclidean space, and by likewise transforming any step between two lattice points 
into a continuous path along the straight line segment joining those points.) 

If the two axes of the torus are of equal length, then the contributions from the 
pairs of paths that wrap around the torus along one direction may be seen to cancel 
the contributions of those that wrap in the perpendicular direction. However, suppose 
the lengths of the lattice along the two axes are unequal. Then, for sufficiently large 
T, there will he a pair of paths wrapping around the shorter length of the torus whose 
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contribution to the integral will not be cancelled by a pair of paths wrapping along 
the other axis, because the latter axis is too long to traverse in T time steps (figure 7). 

In n > 2  dimensions, the proof is more tedious, because the coefficients in the 
transition matrix no longer have the same modulus. Let a pair of non-identical paths 
be called reversal diverging or fransversal diverging, respectively, according to whether 
or not the two paths diverge by having one of the paths execute a reverse step (figure 
8). (Remember, all of the paths under consideration already have an identical first 
step.) The Contribution of a pair of reversal-diverging paths must then be added to 
the contributions of ( n  - 1) pairs of transversal-diverging paths in order to obtain a 
cancellation. In extending the proof to an n-dimensional torus, one will similarly have 
to take special notice of the wrapping pairs, which again may he classed according to 
whether they are reversal diverging or transversal diverging. The contribution from 
such a pair of reversal-diverging paths will cancel out the contributions from ( n  - 1) 
pairs of transversal-divering paths but, again, only if the axes of the torus are of equal 
length. 

We turn next to another curious property of the hodotic solutions, which becomes 
useful in decomposing solutions of the wave equation into components other than the 
2 n  travelling waves discussed above. Let promotion of an m-dimensional solution of 
(2) to an n-dimensional space, with n > m, denote the following procedure. 

Procedure. Take the (m-dimensional) hodotic solution at any two successive time 
values and imbed it in a space of dimension n. That is, use the solution as the boundary 
conditions on a hyperplane of dimension m in an n-dimensional space, with the 

Figure 7. If the two axes of the torus are of unequal length. say L, > L,,  then, at 
t = L , / 2 +  1 I T, a pair of paths forming a loop along the x-axis will "01 be cancelled 
vy '9 L""S"""Y"1& 1uvp """p LllL ,"~",Lcum"u, D l I l L r  DULL, '""p L""," ""'y Y C  III*"C Y l  

paths of length greater than T. 
L.. " ^̂....---_I:_. I.._ "I... .*^ .. A:---.:-.. ^:^^^ _..̂ L "-..,A ^_,.. L^ ..."A* ..r 

*.. .. . .: 

U 

I 
f - - -  

I 
f - - -  

Figure 8. The pair of paths on the left diverges with one path making a reversal: it is said 
to be revemal diverging. The pair on the right diverges with neither of the paths making 
a revenal; it is said to be transversal diverging. (The full line indicates the porlions of the 
two paths that are identical.) 
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solution being zero everywhere outside the hyperplane. Afterwards, iterate according 
to (2) (the speed of light becoming m). 

The hodotic solutions have the interesting property that they may be itereated an 
arbitrary number of times, promoted too a higher dimension, iterated again for some 
other arbitrary number of times, promoted to a still higher-dimensional space, and so 
on, all the while producing a solution whose discrete integrals over the corresponding 
space of the point solution, as well as its square, are constant. The proof is similar to 
the one outlined previously; classes of pairs of non-identical paths can again be shown 
to cancel although, for the purposes of the proof, the number of classes to which a 
pair of paths may belong varies according to the time at which the two members of 
the pair diverged (more precisely, according to whether they diverged before or after 
the given imbedding in the higher dimensional space). Note that, in general, this result 
does not hold for a torus. 

Finally, note that the n-dimensional hodotic solutions, are simply the promotions 
of one-dimensional hodotic solutions to the appropriate higher dimension. 
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